An increase in MECP2 dosage impairs neural tube formation
نویسندگان
چکیده
Epigenetic mechanisms are fundamental for shaping the activity of the central nervous system (CNS). Methyl-CpG binding protein 2 (MECP2) acts as a bridge between methylated DNA and transcriptional effectors responsible for differentiation programs in neurons. The importance of MECP2 dosage in CNS is evident in Rett Syndrome and MECP2 duplication syndrome, which are neurodevelopmental diseases caused by loss-of-function mutations or duplication of the MECP2 gene, respectively. Although many studies have been performed on Rett syndrome models, little is known about the effects of an increase in MECP2 dosage. Herein, we demonstrate that MECP2 overexpression affects neural tube formation, leading to a decrease in neuroblast proliferation in the neural tube ventricular zone. Furthermore, an increase in MECP2 dose provokes premature differentiation of neural precursors accompanied by greater cell death, resulting in a loss of neuronal populations. Overall, our data indicate that correct MECP2 expression levels are required for proper nervous system development.
منابع مشابه
Folate receptor 1 is necessary for neural plate cell apical constriction during Xenopus neural tube formation.
Folate supplementation prevents up to 70% of neural tube defects (NTDs), which result from a failure of neural tube closure during embryogenesis. The elucidation of the mechanisms underlying folate action has been challenging. This study introduces Xenopus laevis as a model to determine the cellular and molecular mechanisms involved in folate action during neural tube formation. We show that kn...
متن کاملMeCP2 plays an analgesic role in pain transmission through regulating CREB / miR-132 pathway
BACKGROUND The Methyl CpG binding protein 2 gene (MeCP2 gene) encodes a critical transcriptional repressor and is widely expressed in mammalian neurons. MeCP2 plays a critical role in neuronal differentiation, neural development, and synaptic plasticity. Mutations and duplications of the human MECP2 gene lead to severe neurodevelopmental disorders, such as Rett syndrome and autism. In this stud...
متن کاملMeCP2 Dependent Heterochromatin Reorganization during Neural Differentiation of a Novel Mecp2-Deficient Embryonic Stem Cell Reporter Line
The X-linked Mecp2 is a known interpreter of epigenetic information and mutated in Rett syndrome, a complex neurological disease. MeCP2 recruits HDAC complexes to chromatin thereby modulating gene expression and, importantly regulates higher order heterochromatin structure. To address the effects of MeCP2 deficiency on heterochromatin organization during neural differentiation, we developed a v...
متن کاملMaternal Mthfd1 disruption impairs fetal growth but does not cause neural tube defects in mice.
BACKGROUND MTHFD1 encodes C1-tetrahydrofolate synthase, which is a folate-dependent enzyme that catalyzes the formation and interconversion of folate-activated one-carbon groups for nucleotide biosynthesis and cellular methylation. A polymorphism in MTHFD1 (1958G→A) impairs enzymatic activity and is associated with increased risk of adverse pregnancy outcomes, but the mechanisms are unknown. ...
متن کاملMecp2 regulates neural cell differentiation by suppressing the Id1 to Her2 axis in zebrafish.
Rett syndrome (RTT) is a progressive neurological disorder caused by mutations in the X-linked protein methyl-CpG-binding protein 2 (MeCP2). The endogenous function of MeCP2 during neural differentiation is still unclear. Here, we report that mecp2 is required for brain development in zebrafish. Mecp2 was broadly expressed initially in embryos and enriched later in the brain. Either morpholino ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurobiology of Disease
دوره 67 شماره
صفحات -
تاریخ انتشار 2014